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ABSTRACT

The Sub-Audio Magnetics (SAM) method is a high-resolution 
electrical technique that derives information on sub-surface 
electrical and magnetic properties by introducing an electric current 
into the ground and measuring the total magnetic field changes on 
the Earth surface at a sub-metre interval via an optically pumped 
magnetometer. One parameter that may be derived from any SAM 
survey is the total-field magnetometric resistivity (TFMMR). 
To date, there are few quantitative interpretational schemes for 
deriving resistivity from TFMMR data. This paper outlines the 
theory to calculate the 2.5 dimensional (2.5D) TFMMR response 
due to a point source of current in an otherwise two-dimensional 
(2D) Earth. The problem is formulated in the wavenumber domain 
by first solving for the electrical potential from the current source, 
and then deriving orthogonal horizontal and vertical components 
of magnetic field using the modified Biot-Savart Law.  An inverse 
Fourier transform is then applied to yield vector magnetic field 
components in the spatial domain, and hence the scalar TFMMR 
response.

A 2.5D finite-element modelling approach is developed to 
model TFMMR responses from various resistivity structures. For 
an isotropic, uniform resistivity Earth the finite-element model 
gives good agreement with analytical results, with an accuracy 
of about 4% in each of the three vector components. The greatest 
error is for the horizontal magnetic field component along strike. 
Finally, we demonstrate that the TFMMR technique is very useful 
for defining basement structures in areas of conductive regolith 
cover. The presence of a regolith (10 Ω.m) has little effect on the 
TFMMR responses provided that its thickness is less than about 
one twentieth of the current-electrode separation. Thus, for a 

typical electrode separation of 1.2 km, the TFMMR response is 
sensitive to basement structures for regolith thickness of up to 
60 m, and hence is an important geophysical method for exploration 
beneath cover.

INTRODUCTION

The geophysical basis of the SAM exploration method has 
been fully described by Cattach et al. (1994), Cattach (1996), 
Fathianpour and Cattach (1995), and Boggs et al. (1998, 1999). 
It is a high-definition technique for simultaneously mapping 
electrical and magnetic properties of the ground. A time-varying 
(typically square-wave) electric current is applied to the ground 
in the sub-audio frequency range (5–20 Hz), between two distant 
electrodes. In general, any electrode configurations may be used 
in a SAM survey, but the most efficient layout currently used is 
the gradient array, or horseshoe layout (as shown in Figure 1). The 
reason for this is mainly due to the logistical ease and efficiency in 
data collection with the benefit of a higher signal-to-noise ratio by 
having the electrode wires at a reasonable distance from the edge 
of the survey area.

An optically pumped magnetometer, such as the TM-4 (Stanley 
and Cattach, 1996), is used to map the combination of Earth’s 
static magnetic field with the artificially produced magnetic field 
from the galvanic current flow. Because the magnetic survey can 
be carried out rapidly on foot (traversing up to 20 km a day) at 
a sample rate of up to 400 Hz, sample spacing may be as small 
as 5 cm, although 0.2 to 0.5 m intervals are commonly used for 
geotechnical or mineral exploration applications. Line-spacings 
are typically a few metres to tens of metres, depending on the size 
of the target body.
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are optimally located along the direction of geological strike. Line A-A′ shows the location 
of the 2.5D model profiles in Figures 4, 5, and 6. map of the SAM survey results.



Spectral analysis of the observed magnetic fields yields the 
following SAM geophysical responses: (i) total magnetic intensity 
(TMI), (ii) total-field magnetometric resistivity (TFMMR), and 
(iii) total-field magnetometric induced polarisation (TFMMIP). 
This paper will discuss only the TFMMR part of the SAM 
response. To date, there have been few quantitative interpretational 
schemes for deriving electrical information from TFMMR data. 
This paper outlines the theory of the 2.5D TFMMR response due 
to a finite point source in a 2D Earth, and derives finite-element 
numerical responses for simple bodies that are compared to 
analytical expressions given by Fathianpour and Cattach (1995). 
Finally, we discuss the application of the TFMMR method for 
mineral exploration beneath conductive regolith cover.

BACKGROUND THEORY

Biot Savart Law

From Maxwell’s equations, the resulting magnetic field B at 
location r due to a current density element J at location r' is given 
by the Biot Savart Law:

(1)

where v is the volume of space in which current density elements 
J are defined (Edwards, 1974; Edwards et al., 1978; Edwards and 
Nabighian, 1991). We assume that magnetic permeability of Earth 
materials is constant and equal to that of free space µ0. We note that 
the current is the sole generator of the static magnetic field, and the 
distribution of this generator is characterised by the magnitude and 
direction of current density vector J.

In its general form, evaluation of equation (1) involves a 
knowledge and integration of the current density vector over the 
entire domain of the problem, which may be a computationally 
intensive task. Edwards et al. (1978) derived a more efficient 
formula, known as the modified Biot-Savart law, to calculate the 
total magnetic field as:

  (2)

where φ is the electric potential, σ is the electrical conductivity, 
and

(3)

As discussed by Edwards et al. (1978) and Fathianpour and 
Cattach (1995), this is a very useful expression for computing all 
three components of the magnetic field, as it reduces the integral 
just to surfaces of the inhomogeneities where ∇′σ(r′) is non-zero.

In computing the TFMMR response for any 2D geological 
model, three orthogonal components of magnetic field are required. 
In Cartesian co-ordinates, these components are obtained by 
expanding equation (2) and observing that for a 2D structure 
striking in the y-direction ∂ σ (x, z)/∂ y = 0, so that

     
          
          

 (4)

 

(5)

and

(6)

We note that the Bx component is the MMR response as defined 
by Edwards (1974). The TFMMR response is simply the scalar 
magnetic response,

                                   TFMMR  = |B . f |  (7)

where f is a unit vector in the direction of the main geomagnetic 
field.

Electric Potential in Spatial and Wavenumber Domains

In equations (4–6) we require knowledge of the electric 
potential as a function of position r'. The general equation for the 
electric potential due to a current source in a non-uniform media 
is given by Poisson’s equation 

(8)

where ρ is the resistivity (=1/σ) (Keller and Frischknecht, 1966). 
In equation (8) the second term can be viewed as the contribution 
from a single point current electrode in a uniform half space with 
resistivity ρ, whereas the first term represents the effect of a charge 
distribution that accumulates at discontinuities in resistivity, as ∇σ 
is non-zero only at these places. From this result and the modified 
Biot-Savart law, we may conclude that both DC resistivity methods 
and their magnetic versions (MMR, MIP, TFMMR, and TFMMIP) 
are equivalent and complementary to each other in terms of the 
parameter sought (resistivity distribution).

For a 2D structure striking in the y-direction with a three-
dimensional (3D) point-source electrode, by using the vector 
identity

                                                                                       (9)

and substituting in equation (8) we get:

(10)

(Dey and Morisson, 1979).

To arrive at a purely 2D partial differential equation we may 
remove the y-dependency through a one-dimensional (1D) Fourier 
transform defined as:

(11a)

 
(11b)

where ky is the wavenumber associated with the y-axis.

Applying equation (11a) to (10), denoting the Fourier transform 
by FT, and using the derivative property of Fourier transform pairs 
(Bracewell, 1986), then

(12)
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yields:

(13)

Equation (13) is the 2.5D Helmholtz equation in the wavenumber 
domain that is solved for a number of ky values to sample the 
spectrum of the potential values φ

_
 (x,k y,z) in the wavenumber 

domain. Because the potential decrease is inversely proportional 
to the distance from source, then the transformed potential has 
asymptotic behaviour as the modified Bessel function of zero 
order since the Fourier transform of the electric potential for a 
homogeneous Earth model is given as:

(14)

where

(15)

and

(16)

are the radial distances from the source (Snyder, 1976). The 
coordinate of the current source in the x-z plane is (xs, zs), and ky is 
the wavenumber corresponding to the y coordinate.

Magnetostatic Formulation in the Wavenumber Domain

After determining the current density distribution (or 
equivalently the electric potential distribution in equation (13)) due 
to the current source Iδ(r-rs), we may use either the general Biot-
Savart law (equation (1)) or the modified Biot-Savart law (equation 
(2)) to compute the associated magnetic field. For computational 
efficiency we have chosen to formulate the modified Biot-Savart 
law in wavenumber domain by taking the Fourier transform of the 
Bx (MMR) component (equation (4)) in the y-direction to obtain 
the following convolution integral:

       

(17)

We use the following identities (Bracewell, 1986):

(18)

and the relationship (Erdélyi et al., 1954):

(19)

      (20)

in which

(21)

and K0 is the modified Bessel function of the zeroth kind. By 
substituting equations (18–21) into equation (14) we obtain the 
final equation for the Bx (MMR) component in wavenumber 
domain

(22)

Using a similar approach, we find the following expressions for 
y and z components:

(23)

(24)

Equations (22–24) are the expressions for the magnetic field 
components in the wavenumber domain. These expressions, 
along with the electric potential in equation (14), form the basic 
equations for calculating the components of the magnetic field in 
wavenumber domain. Once calculated, both the electric potential 
and the magnetic field components can be determined from an 
inverse Fourier transform for a range of wavenumbers.

2.5D FORWARD MODELLING SOLUTIONS

The numerical algorithm presented here involves a finite element 
(FE) approximation to the transformed electric potential over the 
entire half-space domain for a range of wavenumbers (equation (13)), 
followed by a set of numerical line integrations of the transformed 
potentials over the boundaries of the inhomogeneities for each of the 
three orthogonal anomalous magnetic field components (equations 
(22–24)). Results in the spatial domain are obtained by taking an 
inverse Fourier transformation for magnetic fields calculated for 
a set of strategically chosen wavenumbers. The FE formulation 
for the transformed electric potential distribution is based on the 
methods of Wannamaker et al. (1987) and Hohmann (1988).

Figure 2 shows schematically the mesh for a typical TFMMR 
model. Away from the central region, the element size in both 
vertical and horizontal directions is increased almost exponentially 
toward the bottom and side boundaries to satisfy boundary 
conditions. In methods employing a galvanic current source, there 
is no need to discretise the air region (upper half space) as there is 
no conductive current flowing in that region.

An important aspect of 2.5D modelling is appropriate choice of 
wavenumbers (values of ky) that properly construct the spectrum 
of the transformed potential or magnetic fields. Wavenumbers 
must be strategically chosen so that the effects of aliasing and 
under-sampling are kept as small as possible, balanced by 
computational constraints. Because the solution of the system of 
equations for the transformed electric potential requires the largest 
fraction of computing time, a number of different approaches 
for selecting the optimum wavenumber values were attempted. 
As was shown in equations (13–14), the analytic solution for the 
transformed potential above a homogeneous half space is simply 
the modified Bessel function of order zero. Therefore, we must 
select our spectral sampling points to sample the spectrum of 
K0(kyr) properly.
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Unlike DC resistivity modelling, where potential electrodes are 
almost always set apart from the current electrodes, in TFMMR 
modelling it is necessary to evaluate the anomalous field even at 
the position of the current electrodes. This means that the spectrum 
of the anomalous field components has a wide range of variation 
corresponding to the distance of the observation point from the 
current source. This point may be shown by studying the behaviour 
of the modified Bessel function (Figure 3), which represents the 
behaviour of the spectrum of a homogeneous half space on the 
surface of the Earth z = 0, given as:

(25)

Figure 3 shows the behaviour of the modified Bessel function 
of order zero at different distances from the source. As can be 
seen from the figure, this function has the following asymptotic 
behaviour 

(26)

and

(27)

(Abramowitz and Stegun, 1972).

Validation and Accuracy

Previous numerical studies using FE or finite difference methods 
have reported an average of 3–10% error in their approximations 
(Dey and Morrison, 1979; Pridmore et al., 1981). Here, numerical 
results for different components of the isotropic homogeneous 
Earth and vertical fault models are compared to their respective 
analytic solutions given by Fathianpour and Cattach (1995). It 
should be emphasised that propagation of errors in calculating the 
TFMMR response is highly dependent upon the local geomagnetic 
direction that determines the introduction of errors associated with 
all three anomalous components. As a result, the TFMMR error 
would naturally vary between the average error distributed in 
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Fig. 2. Section of the FE mesh used in 2.5D forward modelling. Note that 
each rectangular element is composed of four triangular elements that 
can be assigned different resistivities as shown in the enlargement.
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Fig. 3. Behaviour of the modified Bessel function of order zero as a 
function of distance. The logarithmic singularity at the origin occurs 
for both electrode location (r = 0) and zero wavenumber.
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each component and, depending on the model considered, it may 
sometimes increases or decrease. Results presented here are for 
declination of 25° and inclination of 60°, typical of mid-latitudes.

In order to compare the response of different models, a 
normalised convention was adopted. It was found that normalisation 
of all scale lengths of the problem to the perpendicular distance 
joining the measuring profile to the current source electrode has 
the advantage of both generalising the profile data and providing 
the ability of producing results for any profile perpendicular to the 
strike of geological structures and distant L from the current source 
electrode by simply dividing the normalised values by the profile 
distance. This is a direct consequence of the similarity theorem of 
the Fourier transformation (Bracewell, 1986) which states that if 
f(y) has the Fourier transformation F(k), then f(ay) has the Fourier 
transformation

(28)

In the case of the magnetic field computation in the wavenumber 
domain, as all scale lengths are normalised (unit distance becomes 
the profile distance, L) then the expansion in the space domain 
scale corresponds to compression of the wavenumber domain scale 
and vice versa.

Homogeneous Isotropic Test Model

Figure 4 is a plot of the numerical and analytical results for the 
x and y components of the magnetic field due to a homogeneous 
half space (i.e., the normal field). The results are for the profile A-A' 
of Figure 1 by employing only one current source at the origin. A 
total of 12 wavenumber values were used for approximating the 
spectrum of the field components in the wavenumber domain. A 
mesh composed of 40 × 30 rectangular elements was used, which 
included a total of 2471 nodes and 4800 triangular elements. As 
can be seen from Figure 4 the numerical results for the x and y 
components agree well with analytical results.

For the Bx (MMR) component, the maximum error (9%) occurs 
at the current electrode location, which may be excluded from 
error analysis as the solution at this point is simply an interpolation 
over the singularity, and at the most-distant points from the current 
source (with maximum relative error of 17% at ±1000 m) where 
the magnitude of the field decreases rapidly, producing larger 
round-off errors. However, average Bx error over the whole profile 
length is 4%.

The accuracy of the By component is almost always worse than 
the Bx component, mainly because of a different spectrum pattern 
(insufficient wavenumbers) and the extra numeric directional 
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derivative approximations needed in its evaluation. Moreover, the 
spectrum of the By component is indefinite at zero wavenumber 
and demonstrates a logarithmic singularity near, but not at, ky = 0. 
Nevertheless, results for the By component (average error of 4%) 
show an excellent match with the analytical results (Figure 4).

Vertical Fault Test Model

Figure 5 demonstrates numerical and analytical calculations of 
the anomalous magnetic field arising from a vertical fault model 
with a change in resistivity across the fault of ρ

2 
/ρ

1
= 10. The only 

current electrode is placed on the trace of the fault on the Earth’s 
surface. The first FE mesh (the coarse mesh) used for this model 
was composed of 40 × 30 rectangular elements in the x and z 
directions respectively, using a set of 12 wavenumbers.

From Figure 5, numerical results are in good agreement with the 
analytical solutions. As for the homogeneous model example, the 
maximum errors for Bx occur at the tails of the anomalous curve, 
with an average error of 1.5%. Magnitude of the By component is, 
in general, less than the corresponding analytic result, and occurs 
at the peak values of the anomalous field at about x = ±500 m. 

The numerical Bz component is very close to the true analytical 
solution, and the maximum errors occur at both ends of profile 
(about 14%), while the average error is 5%. The TFMMR response 
has an average relative error of 3%.

To complete this study, the same vertical fault model was 
modelled with a larger mesh of 82 × 35 rectangular elements, and 
employed 40 wavenumbers to achieve a higher level of accuracy. 
Results are shown in Figure 6. As expected, dense sampling of the 
spectrum reduced the By error to less than 1% at the expense of a 
slight increase for Bx of 2%. The average errors for Bz and TFMMR 
for this case were 0.3% and 0.5% respectively.

CONDUCTIVE REGOLITH MODELS

One important issue affecting DC electrical methods is the 
presence of a weathered regolith layer, with thickness from a few 
centimetres up to a few hundred metres. It is well known that 
EM methods have limited use in areas of conductive regolith due 
to the shallow skin-depths. Additionally, surface DC resistivity 
methods above conductive regolith result in small potential 
gradients, yielding low signal-to-noise ratios, and can be distorted 
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by near-surface heterogeneities. Using laboratory 
scale modelling, Edwards (1974) has shown that 
measurement of the magnetic field is superior to 
measuring the corresponding electric field. This is 
because the magnetic field measured at the surface 
is not significantly dependent on near-surface 
resistivity heterogeneities, as the magnetic field is 
an integral over a volume distribution of current.

In order to evaluate the effect of conductive 
regolith on MMR and TFMMR data, a complex 
basement model of conductive vertical structures 
(such as zones of mineralisation and alteration) in 
an otherwise uniform host was modelled, with a 
conductive overburden layer of variable thickness 
(Figure 7). Resistivity of regolith was set as 
10 Ω.m, while the resistivities of the conductive 
structures and host basement rocks were 30 Ω.m 
and 100 Ω.m respectively.

Thicknesses of the regolith ranging from 0.05 
to 0.5L (where L is defined in Figure 1) were 
modelled, and the result for the Bx (MMR) and 
TFMMR profiles are shown in Figures 8 and 9. 
The presence of a conductive regolith has little 
effect on the TFMMR responses provided that its 
conductance (conductivity × thickness) is less than 
a critical value, allowing current to penetrate the 
substructure (Gomez-Trevino and Edwards, 1979).

Using the same approach as Edwards and Howell 
(1976), we define a response parameter α as

(29)

in which G is the regolith conductance, σ1 is the 
conductivity of the host medium, and Le is the 
current source and sink separation (equal to 4L 
as defined in Figure 1). The fraction of current 
penetrating below this conductive regolith with 
increasing thickness is shown in Table 1 (Edwards 
and Howell, 1976).

Thus, for a thin conductive regolith with α much 
less than unity, corresponding to 54% or more 
current penetration under it, the anomalous TFMMR 
response clearly shows the underlying double 
conductive mineral structure. As α increases, or 
equivalently with less current penetration beneath 
the regolith, the responses become rapidly weaker. 
This point is consistent with results obtained by 
Gomez-Trevino and Edwards (1979).
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h = 0.01L 10 100    0.05 > 95%

h = 0.02L 10 100    0.1 90%

h = 0.05L 10 100    0.25 77%

h = 0.1L 10 100    0.5 64%

h = 0.2L 10 100    1 54%

h = 0.4L 10 100    2 30%

Table 1. Parameter settings and corresponding percentage current penetrating below conductive regolith.

Fig. 7. Geometry of two parallel bedrock conductors beneath a conductive overburden.

Fig. 8. Effect of regolith thickness on the B
x
 (MMR) component for the model shown in 

Figure 7.

Fig. 9. Effect of regolith thickness on the TFMMR response for the model shown in 
Figure 7.
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CONCLUSIONS

A 2.5D numerical forward modelling program has been 
developed for computing the TFMMR response due to any 2D 
resistivity structure. In order to achieve the highest accuracy, it was 
found that a rectangular block comprising four triangular elements 
is optimal. Using the algorithm, effects of a number of parameters 
(such as width, thickness, depth and resistivity contrast) of 
commonly occurring 2D structures with infinite and finite depth 
extent have been studied. It was found that the peak TFMMR and 
MMR responses are complicated functions of the depth, thickness, 
profile distance from the source electrode, and the resistivity 
contrast with the surrounding host medium.

We have shown that it is possible to derive geometrical and 
physical parameters of conductive structures beneath a conductive 
overburden, provided that there is a priori information on the 
overburden conductance. The anomalous response has a similar 
spatial wavelength compared to the physical dimensions of the 
causative body.
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